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Intro

Hi! 

● I’m a fourth year PhD student at Mila/University of Montreal, in the group of Professor Jian Tang.

We will talk about how to use Neural Algorithmic Reasoners!

Starting from: 

- Graph neural induction of value iteration
- Neural Algorithmic Reasoners are Implicit Planners



The pipeline



The pipeline



Problem-solving approaches

Neural networksAlgorithms

Algorithm figures: Cormen, Leiserson, Rivest and Stein. Introduction to Algorithms.



Problem-solving approaches

Algorithms

+ Trivially strongly generalise
+ Compositional (subroutines)
+ Guaranteed correctness
+ Interpretable operations
- Inputs must match spec
- Not robust to task variations



Problem-solving approaches

Neural networks

+ Operate on raw inputs
+ Generalise on noisy conditions
+ Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability



Our problem-solving approach

Neural networksAlgorithms

+ Operate on raw inputs
+ Generalise on noisy conditions
+ Models reusable across tasks
- Require big data
- Unreliable when extrapolating
- Lack of interpretability

+ Trivially strongly generalise
+ Compositional (subroutines)
+ Guaranteed correctness
+ Interpretable operations
- Inputs must match spec
- Not robust to task variations

Can we get the best of both worlds?



Our case study



Reinforcement learning setup



Reinforcement learning setup

reward, r ; state, s’ 

state, s 

action, a 

transitions, P(s’ | s, a)

rewards, R(s, a)

policy, π(a | s) 



Reinforcement learning setup

Want to optimise:
Discounted 

cumulative reward

G = ∑t≥0 𝛾
t rt

reward, r ; state, s’ 

state, s 

action, a 

transitions, P(s’ | s, a)

rewards, R(s, a)

policy, π(a | s) 



Code time!



Planning
Policies acting purely through adapting to observed rewards are often called reactive.

In many cases, they require large quantities of data and are slow to adapt.

Planning ameliorates such issues by maintaining an explicit model of the world:

- State transition model: s’ ~ fT(s, a)

- Reward model: r ~ fR(s, a)

- Typically trained from observed trajectories

 

Using these models, a planner can simulate the effects of actions before taking them!

- Comes with many benefits if done properly... 



Planning benefits

Gains in data efficiency: Good model implies fewer interactions are needed to learn to act 

Strong models allow quickly adapting to previously unexplored situations

Being mindful of the consequences of acting enables better safety

Allowing to explicitly account for external factors (e.g. human interactions)

Impactful for game-playing (AlphaGo) and across the sciences (Segler et al., Nature’18)

Encouraging theoretically: perfect models allow for planning perfect policies!



Algorithm to the rescue

Value Iteration: dynamic programming algorithm for perfectly solving an RL env.

where v(s) corresponds to the value of state s.

Guaranteed to converge to optimal solution (fixed-point of Bellman opt. equation)!

  

Optimal policy takes actions that maximise expected value



Value iteration in grid worlds

A simpler case: P is assumed fixed and known.

Each state has known neighbours

Actions are deterministic

In this setting, VI amounts to…

- Computing sum of neighbouring values!



Grid-world VI ~ Convolution!



Value Iteration Networks

Exactly this idea is leveraged by Value Iteration Networks (Tamar et al., NeurIPS’16)

 

Assuming the underlying MDP is discrete, fixed and known…

 

We can perform VI-style computation by stacking a shared convolutional layer

⟹ We have our differentiable planning module!

 

Original VIN paper mainly dealt with grid worlds and hence used CNNs

- Extended to generic MDPs and GNNs by GVINs (Niu et al., AAAI’18)



Moving beyond known world-models

Assuming the MDP is fixed and known was quite helpful

- We never needed to estimate transition models

- Didn’t have to deal with continuous state spaces

What about when we don’t know the MDP?

While it could learn value iteration, the CNN could also learn anything else.



Bridging the 
gap between 
the algorithm 
and its 
application



How would a human engineer use VI? 

Assume we have encoded our state (e.g. with a NN) into embeddings, z(s) ∈ ℝk

To expand a “local MDP” we can apply VI over, we can use a transition model, T
- It is then of the form T : ℝk x A → ℝk

- Optimised such that T(z(s), a) ≈ z(s’)

Many popular methods exist for learning T in the context of self-supervised learning
 

Contrastive learning: discriminate (s, a, s’) from negative pairs (s, a, s~)



Using a transition model to expand

We can use a learned transition model on every action, to be exhaustive (~breadth-first search)

- Doesn’t scale with large action spaces / thinking times; O(|A|K)

- Can find more interesting search strategies



TreeQN/ATreeC

Assume that we have reward/value models, giving us scalar values in every expanded node
 

- We can now directly apply a VI-style update rule!
 
 
 
 
Can then use the computed Q-values directly to decide the policy
 

- Exactly as leveraged by models like TreeQN / ATreeC (Farquhar et al., ICLR’18)
- Also related: Value Prediction Networks (Oh et al., NeurIPS’17)



TreeQN/ATreeC in action



Recap



Recap

We mapped our natural inputs (e.g. pixels) to the space of abstract inputs 
- (local MDP + reward values in every node)

This allowed us to execute VI-style algorithms directly on the abstract inputs
- The VI update is differentiable, and hence so is our entire implicit planner.

 
 

However...



Algorithmic bottleneck

Real-world data is often incredibly rich

We still have to compress it down to scalar values

 

The VI algorithmic solver: 

- Commits to using this scalar

- Assumes it is perfect!

 

If there are insufficient training data to properly estimate the scalars, we hit data efficiency issues 
again!

- Algorithm will give a perfect solution, but in a suboptimal environment



Breaking the bottleneck

Neural networks derive great flexibility from their latent representations

- They are inherently high-dimensional

- If any component is poorly predicted, others can step in and compensate!

To break the bottleneck, we replace the VI update with a neural network!



Breaking the bottleneck with GNNs

GNN over state representations aligns with VI, but may put pressure on the planner
- Same gradients used to construct correct graphs and make VI computations

 
To alleviate this issue, we pre-train the GNN to perform value iteration-style computations (over many 
synthetic MDPs), then deploying it within our planner
 
This exploits the concept of algorithmic alignment (Xu et al., ICLR’20) [Deepening in Part III of the tutorial]



Synthetic data

For each action, a graph (V, E) where each vertex represents a state.

- Node attributes: v(s), r(s,a) 
- Edge attributes: p(s’|s,a), gamma (mask out 50% of edges at random). 

Trained on random P, R for |S|=20 and |A|=5. Tested on |S|={20, 50, 100}, |A|={5, 10, 20}.

 Evaluate strong generalisation!

 Optimise MSE of 1-step dynamics; rollout at test time



Code time!



NAR as Implicit Planner



Results



Results on low-data environments



Results on low-data environments



Why did it 
work?



Studying the executor

Recall, our executor network was pre-trained and frozen
 
The encoder needed to learn to map rich inputs into the executor’s latent space

- Analogous to human who tries to map real-world problems to algorithm inputs!

We evaluate the quality of the embeddings before and after applying the executor.

Here we can compute optimal V*(s)
- Evaluate linear decodability 

by linear regression!
 

Results verify our hypothesis!
- Input values are already predictive
- But the executor consistently

refines them!

Our encoder learnt to correctly map
the input to the latent algorithm!



Studying the algorithmic bottleneck

Algorithmic bottleneck: inaccuracies in scalar inputs to VI affect performance more than 
perturbations in high-dimensional state embeddings.

 
⇒ Algorithmic reasoner sacrifices perfect accuracy to achieve robustness to noise!

We introduce Gaussian noise
- to VI inputs
- to executor embeddings

and monitor policy accuracy

At zero noise, XLVIN is not optimal
 
But VI degrades much faster!

 
- Algorithm may give a perfect solution,

but in a useless environment



Conclusions



XLVIN-specific conclusions

How to formulate optimal plans in a reinforcement learning setting?
- Value Iteration algorithm
- Requires full knowledge of the underlying MDP

 
How can we apply these optimal algorithms even without privileged information?

- Environment constraints → Value Iteration Nets [Tamar et al., NeurIPS’16]
- Apply the algorithm directly → Value Prediction Nets [Oh et al., NeurIPS’17]

 
Peculiar bottleneck effects with applying the algorithm

- Bottleneck implies more data is needed before efficient planning can emerge
- But the very point of planning is data efficiency!

 
We break the bottleneck using XLVIN

- Empirical gains on low-data Atari and classical control
- ATreeC requires more time to catch up

 
Why does it work?

- Demonstrating the algorithmic bottleneck and alignment to VI



Deploying-NAR conclusions

Real-world solutions can benefit from combining classical algorithms with neural networks.

Graph neural networks are well-suited to learn how to imitate dynamic programming algorithms (e.g. 
shortest path for navigation).



Deploying-NAR next steps

Continuous Neural Algorithmic Planners 

(He et al, LoG 2022)

Reasoning-Modulated Representations 

(Velickovic and Bosnjak et al, LoG 2022)

Also on the algorithmic side:

How to transfer algorithmic reasoning knowledge to learn new algorithms?

(Xhonneux et al, NeurIPS 2021)

A Generalist Neural Algorithmic Learner

(Ibarz et al, LoG 2022)



Deploying-NAR next steps

Continuous Neural Algorithmic Planners 

(He et al, LoG 2022)

Reasoning-Modulated Representations 

(Velickovic and Bosnjak et al, LoG 2022)

Also on the algorithmic side:

How to transfer algorithmic reasoning knowledge to learn new algorithms?

(Xhonneux et al, NeurIPS 2021)

A Generalist Neural Algorithmic Learner

(Ibarz et al, LoG 2022)

Especially, in the next 
part of the tutorial:

Deepening NAR



Thank you!
Questions?

andreeadeac22@gmail.com 
https://andreeadeac22.github.io


