
Deepening
Neural Algorithmic Reasoning

Petar Veličković
Andreea Deac

Andrew Dudzik

Learning on Graphs Conference
10 December 2022

Overview

Overview

In this tutorial, I’ll explain why we care, and what we know, about algorithmic

alignment. The rough structure is:

● A brief description of alignment (Xu et al.’s definition and beyond)

● Convolutions, Polynomials, and Integral Transforms

● Code Examples

● Further Theory (monads!)

Alignment:
a prehistory

Alignment: a prehistory

The idea of “algorithmic alignment” was

introduced in Xu et al. (ICLR 2020).

Roughly, the idea is that a network will

generalise better on a reasoning task if the

two share some structure.

In particular, GNNs and Dynamic

Programming are a natural match.

Alignment: a prehistory

Alignment: a prehistory

In other words, a network is aligned to a

“reasoning function” if it can be decomposed

into modules, each of which can easily learn

a corresponding module in the function.

This idea has been hugely influential—just

over 2.5 years later, the paper has 165

citations.

Alignment: a prehistory

However, their definition of DP leaves open quite a

lot of interpretation of what alignment really means:

● How can we align update functions?

● What if alignment requires sparse updates?

● What if we have to update non-differentiable

inputs, like pointers?

● Is it possible for a network to align to more

than one algorithm?

Alignment: a prehistory

Even for the simple case of Bellman-Ford, the alignment of GNNs to DP isn’t as

simple as substituting an update function—there are three different modules!

Alignment: a prehistory

To try to explain these three components of

DP, we wrote a very strange paper. It uses

the idea of a transform to formalize a broad

class of fixed-memory DP algorithms, as

well as message passing in GNNs.

This is not the complete picture! But it’s all

we know, and it led to some new

architectures, so let me tell you about it.

What is a
Convolution?

What is a convolution?

This is a convolution:

What is a convolution?

This is a convolution: And this is a convolution:

What is a convolution?

But transforms are also convolutions:

What is a convolution?

So what do all of these have in common?

The answer should be an algebraic structure that is

flexible enough to not only describe diverse

phenomena, but rigid enough to support rigorous,

provable connections between them.

Integral
Transforms

The integral transform, geometrically

Let’s imagine we want to “send a message” from a circle and a line (a set 𝑊),
onto a (potentially different) line (a set 𝑍).

input_a(x)
= f(x)

input_b(y)
= g(y)

output(y)
= ???

𝑊 𝑍

The integral transform, geometrically

Let’s imagine we want to “send a message” from a circle and a line (a set 𝑊),
onto a (potentially different) line (a set 𝑍).

We could just discard the circle data, but this is clearly suboptimal.
We need a “carrier” object, on which we can carry a message from 𝑊 to 𝑍
Any suggestions?

input_a(x)
= f(x)

input_b(y)
= g(y)

output(y)
= h(g(y))

𝑊 𝑍

The integral transform, geometrically

A nice carrier object is the cylinder, which we denote Y.
We integrate over the circle to get data on 𝑍 :)

How do we produce these messages?

input_a(x)
= f(x)

input_b(y)
= g(y)

output(y) =
∫x message(x,y)dx

𝑊 𝑍

𝑌

message
pushforward

message(x,y)

The integral transform, geometrically

We need arguments (a set 𝑋) for the message computation, which come
directly from the input using a copy or tile operation.

input_a(x)
= f(x)

input_b(y)
= g(y)

output(y) =
∫x message(x,y)dx

𝑊 𝑍

message(x,y)

𝑌

message
pushforward

𝑋

The integral transform, geometrically

Note, morphism 𝑋→𝑊 points the “wrong” way :)

input_a(x)
= f(x)

input_b(y)
= g(y)

output(y) =
∫x message(x,y)dx

𝑊 𝑍

message(x,y) =
f(x) * g(y)

𝑌

message
pushforward

arg_a(x,y)
= f(x)

arg_b(x,y)
= g(y)

𝑋

argument
pushforward

pullback

The integral transform, algebraically

We define a polynomial to be a diagram of

finite sets and functions between them, of

the form given on the right.

To interpret such a diagram in terms of a

transform of tensors, we need to fix a set R

equipped with some kind of multiplication ⊗

and addition ⊕, a semiring.

The integral transform, algebraically

With R a semiring, we can produce R-valued

tensors mapping input tensor to output

tensors.

We call the three steps the pullback, (defined

as a tiling operation) the argument

pushforward, (defined using ⊗) and the

message pushforward (defined using ⊕).

The integral transform, algebraically

The basic idea is that a message is

produced by “multiplying” an (ordered)

list of arguments, and the output is

produced by “adding” an (unordered)

bag of messages.

By picking the right semiring R, we can

use the same polynomial to describe

either a GNN or a DP algorithm.

The integral transform, algebraically

When R is the real numbers with the

usual addition and multiplication, this

describes convolution in neural

networks, including basic

message-passing.

When R is something more “tropical”,

like the extended natural numbers with

min and +, we get some classical

algorithms!

Example: Bellman-Ford

The polynomial on the right represents the

Bellman-Ford algorithm.

For simplicity, we add a self-edge of weight 0 to

each vertex. Then the input consists of node values

and edge weights, and the transform follows the

usual formula:

Example: Message passing

Pseudocode Alignment

Code Examples
https://github.com/deepmind/clrs/tree/master/clrs/_src/processors.py

Code Examples: PGN

Code Examples: MPNN

Code Examples: MPNN

Code Examples: PGN-triplets

Code Examples: PGN-triplets

Code Examples: PGN-triplets

Type-checking GNNs

The triplet architecture came from the

realization that the usual method for producing

edge features in GNNs doesn’t pass our

polynomial “type checker”.

In the diagram on the right, o is not a function!

Even though the architecture can be

implemented in practice, this view makes it easy

to tell that the edge representation is

overloaded; we are performing an “illegal” copy.

Monads,
Mo’ Problems

Monads

The list monad

There is probably no type constructor
more common in programming than
the list functor.

Given a type X, we have a new type
list(X) of the lists with entries from X.

We also have a way to wrap
instances of X into instances of
list(X), and concatenation allows us
to turn lists of lists into lists.

Message passing with monads

All of these operations work for bags

as well! A bag or multiset is like a list,

but without an ordering.

We use the list and bag monads to

break down message passing; the

messages are aggregated from lists of

arguments, and the outputs are

aggregated from bags of messages.

Monads

But there’s more! These two monads have a distributive law:

Monads

This law leads us to the conclusion we stated earlier: our

feature space should have the structure of a semiring.

(see cats.for.ai for more details)

Thank you!
Questions?

adudzik@deepmind.com

