Deepening

Neural Algorithmic Reasoning

Petar Velickovicé
Andreea Deac
Andrew Dudzik

Learning on Graphs Conference
10 December 2022

Overview

Overview i

In this tutorial, I'll explain why we care, and what we know, about algorithmic

alignment. The rough structure is:

e A brief description of alignment (Xu et al’s definition and beyond)
e Convolutions, Polynomials, and Integral Transforms

e Code Examples

e Further Theory (monads!)

Alignment:
a prehistory

Alignment: a prehistory

The idea of “algorithmic alignment” was
introduced in Xu et al. (ICLR 2020).

Roughly, the idea is that a network will
generalise better on a reasoning task if the

two share some structure.

In particular, GNNs and Dynamic

Programming are a natural match.

WHAT CAN NEURAL NETWORKS REASON ABOUT?

Keyulu Xuf, Jingling Li*, Mozhi Zhang?, Si S. Du}, Ken-ichi Kawarabayashi¥,
Stefanie Jegelka®

tMassachusetts Institute of Technology (MIT)

HUniversity of Maryland

SInstitute for Advanced Study (IAS)

9National Institute of Informatics (NII)

{keyulu, stefje}@mit.edu

ABSTRACT

Neural networks have succeeded in many reasoning tasks. Empirically, these
tasks require specialized network structures, e.g., Graph Neural Networks (GNNs)
perform well on many such tasks, but less structured networks fail. Theoretically,
there is limited understanding of why and when a network structure generalizes
better than others, although they have equal expressive power. In this paper, we
develop a framework to characterize which reasoning tasks a network can learn well,
by studying how well its computation structure aligns with the algorithmic structure
of the relevant reasoning process. We formally define this algorithmic alignment
and derive a sample complexity bound that decreases with better alignment. This
framework offers an explanation for the empirical success of popular reasoning
models, and suggests their limitations. As an example, we unify seemingly different
reasoning tasks, such as intuitive physics, visual question answering, and shortest
paths, via the lens of a powerful algorithmic paradigm, dynamic programming
(DP). We show that GNNs align with DP and thus are expected to solve these tasks.
On several reasoning tasks, our theory is supported by empirical results.

&

Alignment: a prehistory

Definition 3.3. (PAC learning and sample complexity). Fix an error parameter € > 0 and failure
probability § € (0,1). Suppose {z;, yz}f\i , are ii.d. samples from some distribution D, and the

data satisfies y; = g(z;) for some underlying function g. Let f = A({z;, yi}i]\il) be the function
generated by a learning algorithm 4. Then g is (M, €, §)-learnable with A if

Penp [If(2) —9(2) < 21 -4 3.1

The sample complexity C 4 (g, €, 6) is the minimum M so that g is (M, €, §)-learnable with .A.

With the PAC learning framework, we define a numeric measure of algorithmic alignment (Defini-
tion 3.4), and under simplifying assumptions, we show that the sample complexity decreases with
better algorithmic alignment (Theorem 3.6).

Formally, a neural network aligns with an algorithm if it can simulate the algorithm via a limited
number of modules, and each module is simple, i.e., has low sample complexity.

Definition 3.4. (Algorithmic alignment). Let g be a reasoning function and N a neural network
with n modules N;. The module functions f1, ..., f,, generate g for A if, by replacing N; with f;,
the network A simulates g. Then N (M, ¢, 6)-algorithmically aligns with g if (1) f1, ..., f, generate
g and (2) there are learning algorithms .4; for the AV;’s such that n - max; C 4, (fi,€,6) < M.

1=

Alignment: a prehistory

In other words, a network is aligned to a
“reasoning function” if it can be decomposed
into modules, each of which can easily learn

a corresponding module in the function.

This idea has been hugely influential—just
over 2.5 years later, the paper has 165

citations.

WHAT CAN NEURAL NETWORKS REASON ABOUT?

Keyulu Xuf, Jingling Li*, Mozhi Zhang?, Si S. Du}, Ken-ichi Kawarabayashi¥,
Stefanie Jegelka®

tMassachusetts Institute of Technology (MIT)

HUniversity of Maryland

SInstitute for Advanced Study (IAS)

9National Institute of Informatics (NII)

{keyulu, stefje}@mit.edu

ABSTRACT

Neural networks have succeeded in many reasoning tasks. Empirically, these
tasks require specialized network structures, e.g., Graph Neural Networks (GNNs)

perform well on many such tasks, but less structured networks fail. Theoretically,

there is limited understanding of why and when a network structure generalizes
better than others, although they have equal expressive power. In this paper, we
develop a framework to characterize which reasoning tasks a network can learn well,
by studying how well its computation structure aligns with the algorithmic structure
of the relevant reasoning process. We formally define this algorithmic alignment
and derive a sample complexity bound that decreases with better alignment. This
framework offers an explanation for the empirical success of popular reasoning
models, and suggests their limitations. As an example, we unify seemingly different
reasoning tasks, such as intuitive physics, visual question answering, and shortest
paths, via the lens of a powerful algorithmic paradigm, dynamic programming

(DP). We show that GNNs align with DP and thus are expected to solve these tasks.

On several reasoning tasks, our theory is supported by empirical results.

&

Alignment: a prehistory j

However, their definition of DP |leaves open quite a

|Ot Of Intel’pretatlon Of Wh at a | |g n ment rea I Iy means: Definition 3.4. (Algorithmic alignment). Let g be a reasoning function and A a neural network

with n modules N;. The module functions fi, ..., f, generate g for N if, by replacing NV; with f;,
the network N simulates g. Then N (M, €, §)-algorithmically aligns with g if (1) fi, ..., f, generate
g and (2) there are learning algorithms A; for the A;’s such that n - max; C4, (fi,€,0) < M.

e How can we align update functions?

e What if alignment requires sparse updates?

4.3 DYNAMIC PROGRAMMING

H _Ai H ‘We observe that a broad class of relational reasoning tasks can be unified by the powerful algorithmic
L4 W h at If we h ave to u pd ate non d Iffe re ntl a b I e paradigm dynamic programming (DP) (Bellman, 1966). DP recursively breaks down a problem into
simpler sub-problems. It has the following general form:
H H H Al k][¢] = DP-Update({A k—1][7]},5 =1... 4.1
|nputs’ like p0|nters? nswerlk] 1] pdate({Answer[k — 1][j]} , j n), @D

where Answer|[k][z] is the solution to the sub-problem indexed by iteration k and state i, and DP-
Update is an task-specific update function that computes Answer[k][i] from Answer[k — 1][;]’s.

® IS |t poss | b | e for a netwo rk to a | |g n to more GNNs algorithmically align with a class of DP algorithms. We can interpret GNN as a DP algorithm,

where node representations hgk) are Answer|[k][¢], and the GNN aggregation step is the DP-Update.
Therefore, Theorem 3.6 suggests that a GNN with enough iterations can sample efficiently learn any

than one al go rithm? DP algorithm with a simple DP-update function, e.g. sum/min/max.

Alignment: a prehistory j

Even for the simple case of Bellman-Ford, the alignment of GNNs to DP isn't as

simple as substituting an update function—there are three different modules!

hu — ¢ (Xu, @ ¢(Xu,xv))

'UENU,

d, < min (du, min d, + 'wv_m)
vEN,

Alignment: a prehistory j

To try to explaln these three components of Graph Neural Networks are Dynamic Programmers

DP, we wrote a very strange paper. It uses

the idea of a transform to formalize a broad N Deephing T DetpMind
adudzik@deepmind.com petarv@deepmind.com
class of fixed-memory DP algorithms, as
Abstract
We” as message paSS|ng |n G N N S. Recent advances in neural algorithmic reasoning with graph neural networks

(GNNss) are propped up by the notion of algorithmic alignment. Broadly, a neural

network will be better at learning to execute a reasoning task (in terms of sam-

ple complexity) if its individual components align well with the target algorithm.

Specifically, GNNSs are claimed to align with dynamic programming (DP), a gen-

T h iS iS N Ot th e C O m I e-t e I Ct u re | B ut i-t’ S a I I eral problem-solving strategy which expresses many polynomial-time algorithms.
p p ° However, has this alignment truly been demonstrated and theoretically quantified?

Here we show, using methods from category theory and abstract algebra, that

. there exists an intricate connection between GNNs and DP, going well beyond the

We kn OW' a n d |t I ed to SO m e n eW initial observations over individual algorithms such as Bellman-Ford. Exposing
this connection, we easily verify several prior findings in the literature, produce

better-grounded GNN architectures for edge-centric tasks, and demonstrate empiri-

1 1 cal results on the CLRS algorithmic reasoning benchmark. We hope our exposition
a rC h IteCt u re Sl S O I et m e tel I yo u a b O Ut It . will serve as a foundation for building stronger algorithmically aligned GNNs.

What is a
Convolution?

What is a convolution?

This is a convolution:

[

What is a convolution?

This is a convolution: And this is a convolution:

y[n| = Z x[klh[n — k] (f*9)(/ f(y)g(z —

[

What is a convolution?

But transforms are also convolutions:

What is a convolution?

So what do all of these have in common?

The answer should be an algebraic structure that is
flexible enough to not only describe diverse
phenomena, but rigid enough to support rigorous,

provable connections between them.

Integral
Transforms

The integral transform, geometrically

Let's imagine we want to “send a message” from a circle and a line (a set W),
onto a (potentially different) line (a set Z).

t_a(x) input_b(y) output(y)
= £ (x) = 9(y) = 272

N

I

The integral transform, geometrically

Let's imagine we want to “send a message” from a circle and a line (a set W),
onto a (potentially different) line (a set Z).

We could just discard the circle data, but this is clearly suboptimal.
We need a “carrier” object, on which we can carry a message from Wto Z
Any suggestions?

input_a(x) dinput_b(y) output(
= f(x) = g(y) = h(g(y

N

Il

The integral transform, geometrically j

A nice carrier object is the cylinder, which we denote Y.
We integrate over the circle to get dataon Z:)
message(Xx,VY)

How do we produce these messages?
(@
T—— . ressage
S ; T § pushforward

_a(x) 1nput b(y) output(y) =
= f(x) = g(y) [, message(x,y)dx

The integral transform, geometrically j

We need arguments (a set X) for the message computation, which come
directly from the input using a copy or tile operation.
message(Xx,VY)

D et eees et eeetennenen e eaneeeennnnnanae} . nessage
R ; o W § pushforward

input_a(x) input_b(y) output(y) =
= f(x) = g(y) J, message(x,y)dx

The integral transform, geometrically #

_ _ @ argument
Note, morphism X—W points the “wrong” way :)

pushforward
arg_a(x,y) arg_b(x,y)

= f(x) = g(y message(x,y) =
? __ § ? _______________________ é £(x) * g(y)

TR : message
pullback @ —_— * _— * g ® pushforward

input_a(x) input_b(y) output(y) =
= f(x) = g(y) [, message(x,y)dx

The integral transform, algebraically

We define a polynomial to be a diagram of

finite sets and functions between them, of

=

h<

the form given on the right.

To interpret such a diagram in terms of a

transform of tensors, we need to fix a set R

equipped with some kind of multiplication ® ~-

and addition &, a semiring. W

The integral transform, algebraically

With R a semiring, we can produce R-valued
tensors mapping input tensor to output

tensors.

We call the three steps the pullback, (defined
as a tiling operation) the
, (defined using ®) and the

message pushforward (defined using).

N

W, R

| X,R] —re — [Y, R]

o®

Z,R

e

I

The integral transform, algebraically

The basic idea is that a message is
produced by “multiplying” an (ordered)
list of arguments, and the output is
produced by “adding” an (unordered)

bag of messages.

By picking the right semiring R, we can
use the same polynomial to describe

either a GNN or a DP algorithm.

[Y,1ist(R)]

e

Il

The integral transform, algebraically

When R is the real numbers with the
usual addition and multiplication, this

describes convolution in neural

Y, 1ist(R)]
. . . _ ~
networks, including basic P ®
. [X, R] ======scee- P@ ----------3 > [Y, R]
message-passing. T |
When R is something more “tropical’, ’ |
like the extended natural numbers with (W, Rl [, R]

min and +, we get some classical

algorithms!

N

Il

Example: Bellman-Ford

The polynomial on the right represents the
Bellman-Ford algorithm. E == E

For simplicity, we add a self-edge of weight 0 to

each vertex. Then the input consists of node values
and edge weights, and the transform follows the 1

usual formula:

du < min (du7 vrgjl\?u d’u 2k 'w'u—)u) V -I— E

2 g

=

Example: Message passing

..
"4 E+FE
mp, Cnbb
A
/ \v \ S
........ mpg <" Mpe ()
X, "X
Message-passing

h, =¢ (Xu, @ ¢(XU7XU)>
vENL

p

Pseudocode Alignment j

rRequire:
Node features X € R"*%,
Message function ¢ : R¥ x RF — R™, VXV+YVXY ——DP —VYxYV
Update function ¢ : R™ — R™

Ensure: Latent features H € R"*™
Arg®™ « tile(X,0,n); // Arg®™? ¢ RPxnxk)
Arg™ < tile(X,1,n); // Arg™’ € Rnxnxk 7 0]
for (u,v) €V x Vdo

msg,,, < Y(argi?, argl®’); // Msg € R?»*"xm

end for > ki

foru € Vdo v V
hu — ¢(@UEV msgw);

end for

Code Examples

https://github.com/deepmind/clrs/tree/master/clrs/_src/processors.py

Code Examples: PGN

z = jnp.concatenate([node_fts, hidden], axis=-1)

m_1 = hk.Linear(self.mid_size)

m_2

hk.Linear(self.mid_size)

m_e = hk.Linear(self.mid_size)
m_g = hk.Linear(self.mid_size)
0ol = hk.Linear(self.out_size)
02 = hk.Linear(self.out_size)
msg_1 = m_1(z)

msg_2 = m_2(z)

msg_e = m_e(edge_fts)

m_g(graph_fts)

msg_g

Ve (V2+V2)+ V2

1+V 4+ V2

-
<
[\V]

Code Examples: MPNN

msgs = (
jnp.expand_dims(msg_1, axis=1) + jnp.expand_dims(msg_2, ax

msg_e + jnp.expand_dims(msg_g, axis=(1, 2)))

is=2) +

V2P (VE+ V) + V22

1+ V +V?

1=

s V2

Code Examples: MPNN

maxarg = jnp.where(jnp.expand_dims(adj_mat, -1),
msgs,
-BIG_NUMBER)

msgs = jnp.max(maxarg, axis=1)

Ve (V2+V2)+ V2

1+ V +V?

1=

Code Examples: PGN-triplets

t_1 = hk.Linear(nb_triplet_fts)
t_2 = hk.Linear(nb_triplet_fts)
t_3 = hk.Linear(nb_triplet_fts)
t_e_1 = hk.Linear(nb_triplet_fts)

1.
t_e_2 = hk.Linear(nb_triplet_fts)
3 = hk.Linear(nb_triplet_fts)

t_e_
t_g = hk.Linear(nb_triplet_fts)

tri 4 =t _1{2)

T 2 =t 2(02)

i 3 = & _3(2)
t_e_1(edge_fts)
tri_e_2 = t_e_2(edge_fts)
tri_e_3 = t_e_3(edge_fts)
tri_g = t_g(graph_fts)

tri_e_1

V3 +3V3 4+ 33

1+V +V?2

Y
<
w

1=

Code Examples: PGN-triplets

return (
jnp.
jnp.
jnp.
jnp.
jnp.
jnp.
jnp.

expand_dims(tri_1, axis=(2, 3))
expand_dims(tri_2, axis=(1, 3))
expand_dims(tri_3, axis=(1, 2))
expand_dims(tri_e_1, axis=3)
expand_dims(tri_e_2, axis=2)
expand_dims(tri_e_3, axis=1)
expand_dims(tri_g, axis=(1, 2, 3))

+ + + + + +

V313V 43V =2l V3

g

1+V +V?2

‘f2

Code Examples: PGN-triplets

03 = hk.Linear(self.out_size)

tri_msgs = o3(jnp.max(triplets, axis=1))

V3 +3V3 4+ 33

14+V 4+ V?

1=

Type-checking GNNs

The triplet architecture came from the
realization that the usual method for producing

edge features in GNNs doesn't pass our
Vig (VE4V2) V2

)

In the diagram on the right, o is not a function! l

polynomial “type checker”.

Even though the architecture can be 14V 4+ V2
implemented in practice, this view makes it easy
to tell that the edge representation is

overloaded; we are performing an “illegal” copy.

Monads,
Mo’ Problems

Monads

QUANTALES AND HYPERSTRUCTURES

Monads, Mo’ Problems

b,
ANDREW]OS)],EI’H DUDZIK
A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Mathematics
in the
Graduate Division
of the

University of California, Berkeley

INTRODUCTION

We cannot understand what something is without grasping what, under
certain conditions, it can become.

— Roberto Mangabeira Unger,
The Singular Universe and the Reality of Time

The list monad i

There is probably no type constructor
list : Set — Set more common in programming than
the list functor.

Given a type X, we have a new type

nx : X — list(X) list(X) of the lists with entries from X.

We also have a way to wrap

px : list(list(X)) — list(X) instances of X into instances of
list(X), and concatenation allows us
to turn lists of lists into lists.

Message passing with monads j

All of these operations work for bags

as welll A bag or multiset is like a list,

but without an ordering. Y, 1ist(R)]

__ T g

_Pe ®\
We use the list and bag monads to [XTR] """""" e ¢IGH =
break down message passing; the @ \[z,bag(R)]
' R i
messages are aggregated from lists of ’ & w®
(W, R] [Z, R|

arguments, and the outputs are

aggregated from bags of messages.

Monads

But there's more! These two monads have a distributive law:

A : list(bag) — bag(list)

)\([B(),Bl,. : ,Bn]) = <[b0,b1,. : ,bn] I bz < Bz>

1=

Monads

This law leads us to the conclusion we stated earlier: our

feature space should have the structure of a semiring.
A : list(bag) — bag(list)

)\([B(),Bl,. : ,Bn]) = <[b0,b1,. : ,bn] I bz < Bz>

(see cats.for.ai for more details)

1=

b

Questions?

Thank you

