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Overview



Overview

In this tutorial, I’ll explain why we care, and what we know, about algorithmic 

alignment.  The rough structure is:

● A brief description of alignment (Xu et al.’s definition and beyond)

● Convolutions, Polynomials, and Integral Transforms

● Code Examples

● Further Theory (monads!)



Alignment:
a prehistory



Alignment: a prehistory

The idea of “algorithmic alignment” was 

introduced in Xu et al. (ICLR 2020).

Roughly, the idea is that a network will 

generalise better on a reasoning task if the 

two share some structure.

In particular, GNNs and Dynamic 

Programming are a natural match.



Alignment: a prehistory



Alignment: a prehistory

In other words, a network is aligned to a 

“reasoning function” if it can be decomposed 

into modules, each of which can easily learn 

a corresponding module in the function.

This idea has been hugely influential—just 

over 2.5 years later, the paper has 165 

citations.



Alignment: a prehistory

However, their definition of DP leaves open quite a 

lot of interpretation of what alignment really means:

● How can we align update functions?

● What if alignment requires sparse updates?

● What if we have to update non-differentiable 

inputs, like pointers?

● Is it possible for a network to align to more 

than one algorithm?



Alignment: a prehistory

Even for the simple case of Bellman-Ford, the alignment of GNNs to DP isn’t as 

simple as substituting an update function—there are three different modules!



Alignment: a prehistory

To try to explain these three components of 

DP, we wrote a very strange paper.  It uses 

the idea of a transform to formalize a broad 

class of fixed-memory DP algorithms, as 

well as message passing in GNNs.

This is not the complete picture!  But it’s all 

we know, and it led to some new 

architectures, so let me tell you about it.



What is a 
Convolution?



What is a convolution?

This is a convolution:



What is a convolution?

This is a convolution: And this is a convolution:



What is a convolution?

But transforms are also convolutions:



What is a convolution?

So what do all of these have in common?

The answer should be an algebraic structure that is 

flexible enough to not only describe diverse 

phenomena, but rigid enough to support rigorous, 

provable connections between them.



Integral
Transforms



The integral transform, geometrically

Let’s imagine we want to “send a message” from a circle and a line (a set 𝑊), 
onto a (potentially different) line (a set 𝑍).

input_a(x) 
= f(x)

input_b(y) 
= g(y)

output(y) 
= ???

𝑊 𝑍



The integral transform, geometrically

Let’s imagine we want to “send a message” from a circle and a line (a set 𝑊), 
onto a (potentially different) line (a set 𝑍).

We could just discard the circle data, but this is clearly suboptimal.
We need a “carrier” object, on which we can carry a message from 𝑊 to 𝑍
Any suggestions?

input_a(x) 
= f(x)

input_b(y) 
= g(y)

output(y) 
= h(g(y))

𝑊 𝑍



The integral transform, geometrically

A nice carrier object is the cylinder, which we denote Y.
We integrate over the circle to get data on 𝑍 :)

How do we produce these messages?

input_a(x) 
= f(x)

input_b(y) 
= g(y)

output(y) = 
∫x message(x,y)dx

𝑊 𝑍

𝑌

message
pushforward

message(x,y)



The integral transform, geometrically

We need arguments (a set 𝑋) for the message computation, which come 
directly from the input using a copy or tile operation.

input_a(x) 
= f(x)

input_b(y) 
= g(y)

output(y) = 
∫x message(x,y)dx

𝑊 𝑍

message(x,y)

𝑌

message
pushforward

𝑋



The integral transform, geometrically

Note, morphism 𝑋→𝑊 points the “wrong” way :)

input_a(x) 
= f(x)

input_b(y) 
= g(y)

output(y) = 
∫x message(x,y)dx

𝑊 𝑍

message(x,y) = 
f(x) * g(y)

𝑌

message
pushforward

arg_a(x,y) 
= f(x)

arg_b(x,y) 
= g(y)

𝑋

argument 
pushforward

pullback



The integral transform, algebraically

We define a polynomial to be a diagram of 

finite sets and functions between them, of 

the form given on the right.

To interpret such a diagram in terms of a 

transform of tensors, we need to fix a set R 

equipped with some kind of multiplication ⊗ 

and addition ⊕, a semiring.



The integral transform, algebraically

With R a semiring, we can produce R-valued 

tensors mapping input tensor to output 

tensors.

We call the three steps the pullback, (defined 

as a tiling operation) the argument 

pushforward, (defined using ⊗) and the 

message pushforward (defined using ⊕).



The integral transform, algebraically

The basic idea is that a message is 

produced by “multiplying” an (ordered) 

list of arguments, and the output is 

produced by “adding” an (unordered) 

bag of messages.

By picking the right semiring R, we can 

use the same polynomial to describe 

either a GNN or a DP algorithm.



The integral transform, algebraically

When R is the real numbers with the 

usual addition and multiplication, this 

describes convolution in neural 

networks, including basic 

message-passing.

When R is something more “tropical”, 

like the extended natural numbers with 

min and +, we get some classical 

algorithms!



Example: Bellman-Ford

The polynomial on the right represents the 

Bellman-Ford algorithm.

For simplicity, we add a self-edge of weight 0 to 

each vertex.  Then the input consists of node values 

and edge weights, and the transform follows the 

usual formula:



Example: Message passing



Pseudocode Alignment



Code Examples
https://github.com/deepmind/clrs/tree/master/clrs/_src/processors.py



Code Examples: PGN



Code Examples: MPNN



Code Examples: MPNN



Code Examples: PGN-triplets



Code Examples: PGN-triplets



Code Examples: PGN-triplets



Type-checking GNNs

The triplet architecture came from the 

realization that the usual method for producing 

edge features in GNNs doesn’t pass our 

polynomial “type checker”.

In the diagram on the right, o is not a function!  

Even though the architecture can be 

implemented in practice, this view makes it easy 

to tell that the edge representation is 

overloaded; we are performing an “illegal” copy.



Monads,
Mo’ Problems



Monads



The list monad

There is probably no type constructor 
more common in programming than 
the list functor.

Given a type X, we have a new type 
list(X) of the lists with entries from X.

We also have a way to wrap 
instances of X into instances of 
list(X), and concatenation allows us 
to turn lists of lists into lists.



Message passing with monads

All of these operations work for bags 

as well!  A bag or multiset is like a list, 

but without an ordering.

We use the list and bag monads to 

break down message passing; the 

messages are aggregated from lists of 

arguments, and the outputs are 

aggregated from bags of messages.



Monads

But there’s more!  These two monads have a distributive law:



Monads

This law leads us to the conclusion we stated earlier: our 

feature space should have the structure of a semiring.

(see cats.for.ai for more details)



Thank you!
Questions?

adudzik@deepmind.com
 


